
Simon Coenen Nvidia Flex – Soft Bodies

1

Nvidia FleX
Soft bodies

Graduation Work

Digital Arts & Entertainment

Simon Coenen

Simon Coenen Nvidia Flex – Soft Bodies

2

Table of Contents

1.0 Introduction ... 3

2.0 Problems at first sight ... 3

3.0 The building blocks of Nvidia FleX ... 4

3.1 Initializing and updating FleX .. 4

3.2 The particle system ... 5

3.3 FleX parameters .. 5

3.4 The result ... 6

4.0 Rendering the particles individually .. 7

5.0 Data storage .. 7

6.0 Starting out with soft bodies ... 8

6.1 The anatomy of a soft body... 8

6.2 Creating a soft body .. 10

6.3 Uploading the data to the solver ... 10

6.4 Creating the skinning ... 12

6.5 Rendering the body ... 12

6.6 Final result ... 14

7.0 Triangle mesh collision .. 15

7.1 Creating the triangle mesh .. 15

7.2 Creating and updating the collision mesh ... 16

8.0 Runtime parameter controlling ... 17

9.0 Fluids.. 18

9.1 Parameters .. 18

9.2 Rendering .. 18

10.0 Notes ... 20

10.1 Nvidia FleX and Nvidia PhysX .. 20

10.2 Other notes ... 20

10.3 Reflection... 21

11.0 Acknowledgements ... 22

12.0 References ... 22

Simon Coenen Nvidia Flex – Soft Bodies

3

1.0 Introduction
Nvidia FleX is a particle-based simulation library that is based on Position-Based
Dynamics and Unified Particle Physics for Real-Time Applications (Miles Macklin).
Every object is a system of particles and are all connected by different constraints.
Each frame, the solver calculates a position for each particle in the system depending
on several interactions and parameters. Using this system, you can achieve various
results like cloth, fluids, gases, rigid bodies, soft bodies…

From the manual: FleX is a particle based simulation technique for real-time visual effects.
Traditionally, visual effects are made using a combination of elements created using
specialized solvers for rigid bodies, fluids, clothing, etc.

The goal of this research is to get to know the Nvidia FleX framework and learn how
such a system is built up using only particle physics to eventually implement soft body
physics. To start with, I analyzed the demo from Nvidia that is included with the source
development kit thoroughly. The application is quite interesting and has several
demos to showcase all the Nvidia FleX features in C++ with a very basic OpenGL
rendering setup. The demo application and its source code are going to be my main
reference for this research.

Like every SDK, Nvidia FleX has documentation that consists out of a short ‘Getting
Started’ manual and a compact code reference document. These documents put you
on the right tracks to start out with but unfortunately lack detailed information.

There are integrations of Nvidia FleX available for Unreal Engine and Unity Engine.
Nvidia has a custom Unreal Engine branch with many Nvidia GameWorks tools
integrated including Nvidia FleX. These integrations are accessible for developers for
free on GitHub but the integration is very engine specific, meaning that it is hard to
read and specifically adapted to work in Unreal Engine. Unity has an unofficial
integration called ‘uFlex’ and it is available on the Unity Asset store for an acceptable
price. Both these integrations are very interesting but I try to stay away from those
because it is more interesting to implement it from the bottom up.

2.0 Problems at first sight
The first and most obvious thing to do when starting to research something is search
for some possible references and uses. I was surprised to see that there is very little
to no information available about Nvidia FleX. The framework is currently being used
in only two games: Killing Floor 2 and Fallout 4. Looking at the official Nvidia website,
I realized that even the documentation on their website is outdated. The framework is
currently in version 1.0 while the documentation is still set on version 0.8. Fortunately,
I noticed there is a Nvidia Developer Forum that seemed quite active and tried asking
a few questions but after a few weeks, I didn’t receive any response.

Luckily the demo included with the SDK is quite extensive and uses almost all the
features of the framework except those from version 1.0. This application has very
useful demos but it is extremely hard to read since it is specifically made for demo
purposes. The rendering API used in the demo is OpenGL while engine I work with is
using DirectX so it required me to look in to some OpenGL to understand what was
going on in several situations.

Simon Coenen Nvidia Flex – Soft Bodies

4

3.0 The building blocks of Nvidia FleX
All of the applications of FleX like soft bodies, fluids, cloth, … have the same base
principles so it was best to first look at the base building blocks of the framework and
then move on the actual creation of soft bodies.

So before digging into the actual implementation of the framework, I carefully
analyzed the demo of Nvidia. Since the code is very hard to read, it took some time
to figure out how the systems are initialized, the particles are created, updated and
then rendered. Below, I will explain the steps to initialize and use the framework.

3.1 Initializing and updating FleX

The FleX system works with different solvers that all act independent from each other.
Multiple solvers can be created and updated separately. This makes having multiple
effects much easier because it provides more flexibility when setting up the
parameters that control the behavior of the particles controlled by a solver.

In the newer version of Nvidia FleX, you can create containers. Containers have
basically the same behavior as a solver but manages all the memory allocations their
selves. Unfortunately, I found no information whatsoever about this data structure.

Below is a simple overview of initializing FleX with one solver. A more detailed
overview of the pipeline can be seen on the image in chapter 3.4.

It is interesting that the solver itself does not have any methods but merely acts as a
pointer to a set of data that the framework is managing. For every method that alters
particles, the solver has to be passed as a parameter. This is the case for many data
structures in the framework.

flexInit(FLEX_VERSION);
FlexSolver* pFlexSolver = flexCreateSolver(1000, 0);
while (true)
{
 GameLoop();
 flexUpdateSolver(pFlexSolver, 1.0f / 60.0f, 3, nullptr);
}
flexDestroySolver(pFlexSolver);
flexShutdown();

Simon Coenen Nvidia Flex – Soft Bodies

5

3.2 The particle system

The main idea of FleX is that the base of every object consists out of particles. For
each particle, the position, velocity and inverse mass is stored and saved in large
arrays managed by the FleX solver.

The particle structure would look like this but using a type
like Vector4/XMFLOAT4 (=16 bytes) would be the same.
Like with cloth in Nvidia PhysX, the inverse mass is stored
together with the position.

Aside from these properties, each particle has a ‘phase’. This phase influences the
way particles interact with each other. A phase holds the particle group and the
particle flag. The group acts like a collision filter.

Knowing this, you can already set up a simple particle system

As said, when modifying particles, the first parameter is almost always the solver. The
last parameter is an enumeration to indicate the memory location of the data. I will
elaborate on this later.

3.3 FleX parameters

The behaviors of the particles are set on a per-solver basis. All of these parameters
are stored in the FlexParams data structure. The FlexParams can influence for
example the gravity of the particles, the friction, the collision distance, ... Important to
know is that each solver has its own collision detection pipeline. This means if I
needed interaction between systems that need to have different parameters, it would
not be possible. Below are the most important parameters.

int mNumIterations Number of solver iterations to perform per-substep.

float mGravity[3] Constant acceleration applied to all particles.

float mRadius The maximum interaction radius for particles.

float mSolidRestDistance The distance non-fluid particles attempt to maintain from each
other, must be in the range]0, radius].

float mDynamicFriction Coefficient of friction used when colliding against shapes.

float mStaticFriction Coefficient of static friction used when colliding against shapes.

float mParticleFriction Coefficient of friction used when colliding particles.

float mCollisionDistance Distance particles maintain against shapes, note that for robust
collision against triangle meshes this distance should be greater
than zero.

The parameters are set simply by using this method:

struct Particle
{
 float x, y, z;
 float invWeight;
};

flexSetParticles(m_pFlexSolver, particles.data(), particles.size(), eFlexMemoryHost);
flexSetVelocities(m_pFlexSolver, velocities.data(), velocities.size(), eFlexMemoryHost);
flexSetActive(m_pFlexSolver, indices.data(), indices.size(), eFlexMemoryHost);

flexSetParams(pFlexSolver, &FlexParams);

Simon Coenen Nvidia Flex – Soft Bodies

6

3.4 The result

By setting up all the things I’ve said before, I already had a simple application running
that had particles behaving like described in the FlexParams. In general, the pipeline
can be seen like the image below:

FleX does not take care of any rendering so after creating all the particles, they will
update each frame but visually you won’t see anything happen. So before continuing
studying the FleX framework, I had to make sure I had a way of visually debugging
the particles by rendering them as spheres.

Simon Coenen Nvidia Flex – Soft Bodies

7

4.0 Rendering the particles individually
In the demo of Nvidia, the particles are rendered as spheres, this looked like the best
way to visualize them and see how they behave.

When using the framework, there will be an extreme amount (>10 000) of particles so
rendering each particle in a separate draw call would be extremely inefficient. My
solution was to make use of the instancing feature of DirectX. I treat every particle as
a position so I can upload the position data to the GPU and render them all at once.

The input layout eventually looked like this:

The phase of the particle is used to color-code the collision groups of the particles.

To test this, I created some particles with random collision groups (see below). The
rendering of the spheres itself is very efficient.

5.0 Data storage
Since the framework does not provide any means to store the data outside the
simulation, I needed to created a way to centralize all this data and contain it within
one system. Not doing this would make it really difficult to pass around data to
different systems and bodies.

I created a FlexSystem class that represented a FlexSolver with all its necessary
data like the positions, velocities, collision shapes, rigid data and parameters. This
means that instead of creating a FlexSolver for a new system, I create a FlexSystem
so it can easily accommodate all possible data required by the system. This turned
out to work very well since multiple systems of particles could make use of one
single FlexSystem because creating for example a soft body requires you to pass a
FlexSystem in the constructor. When I would need a system with different
parameters, I simply created a second FlexSystem for that to be updated
separately. The FlexSystem updates the solver, fetches its updated data and
uploads the modified data at the end of each frame.

//Input Slot 0 (Vertex Data)
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
//Input Slot 1 (Instance Data)
{ "WORLDPOS", 0, DXGI_FORMAT_R32G32B32_FLOAT, 1, 0, D3D11_INPUT_PER_INSTANCE_DATA, 1 },
{ "PHASE", 0, DXGI_FORMAT_R32_SINT, 1, 12, D3D11_INPUT_PER_INSTANCE_DATA, 1 },

Simon Coenen Nvidia Flex – Soft Bodies

8

6.0 Starting out with soft bodies
Knowing the basics of FleX, I could move on to looking in to the creation of a soft
body. The principle of having position, velocity, phase, … data will stay the same. The
way they are obtained is different. On top of that data, a new set of data is introduced:
the ‘rigids’ or ‘clusters’.

6.1 The anatomy of a soft body

In FleX, a soft body consists out of several rigids/clusters. Every cluster has their own
position and rotation and serve as some kind of ‘joint’ for the body. Every particle is
connected to one or more clusters with a weight between 0.0 and 1.0. Just like
skinning for animations, it defines how much a cluster influences the transform of a
particle. This means that if you would want a rigid body, there would only be one
cluster and all the particles would be connected to this cluster with weight 1.0.

As an example, take Patrick Star on the image below. The green dots represent
clusters. Each cluster has a radius (the green circle). If the clusters are overlapping,
they are connected by a user-defined stiffness.

When there is a collision or an external force, the clusters will be influenced by it and
because the particles are connected with these clusters, so will they. This is the base
principle of rigids/clusters in FleX.

In FleX, this data is stored in three different arrays:

• RigidIndices: Stores the index of the particles that are connected with a certain
rigid.

• RigidOffsets. Stores the range of what indices belong to the rigid.
• RigidCoefficients: Stores the weight of each particle to their rigids.

Simon Coenen Nvidia Flex – Soft Bodies

9

Below an image that shows how these two arrays are related to each other and to the
particle data array.

At the start, this seemed very confusing but after creating a diagram like above,
everything became clear.

The RigidOffsets always start with ‘0’. This is something that has to be added explicitly
or the program will result in to some hard to find bug. I will explain the system by
means of an example using the diagram on the top:

Take rigid with index 4. The rigid offset of that is 8 and the one after is 11. This means
that the start offset of the RigidIndices for that rigid is 8 and end at 11 exclusive ([8,
11[). Those RigidIndices are: 8, 9 and 7. These indices point at particles p9, p10 and
p7. As a result, particles p9, p10 and p7 are connected with the rigid with index 4.
The weight of these connections are stored in the Rigid Coefficients array and
obtained by the RigidIndices as well.

Knowing this, I could move on to practically creating a soft body. I will split up the
process is in to four parts:

1. Voxelizing the mesh
2. Uploading the data to the solver
3. Creating the skinning of the body
4. Rendering the body.

Simon Coenen Nvidia Flex – Soft Bodies

10

6.2 Creating a soft body

During my research, I started with a basic DirectX 11 framework with a MeshFilter
class. This class holds all the vertex information needed to send to the GPU when
rendering like the position, normal, color,… The FleX framework has a convenient
helper function ‘flexExtCreateSoftFromMesh()’ that takes care of voxelizing the mesh
according the given parameters. The function takes position and index information
from a mesh together with a few parameters. These parameters are:

float particleSpacing The spacing between the particles

float volumeSampling The resolution the mesh is voxelized at to generate interior
sampling

float surfaceSampling The amount of samples that is taken from the surface to
improve the surface detail.

float clusterSpacing The spacing for shape-matching clusters] radius,
MAX_FLOAT [

float clusterRadius The actual size of the clusters. The higher this value, the more
the clusters overlap and the more rigid the body will be. If this
value is too low, the body will just fall apart

float clusterStiffness The stiffness between the connected clusters

float linkRadius If particles are below this distance, a distance constraint will
be created between those particles with a user-defined
stiffness (linkStiffness).

float linkStiffness The stiffness of the distance constraints.

The function returns a FlexExtAsset*. This is a structure that contains the particle data
that has to be sent to the solver and shape information that is required to set up the
skinning for eventually rendering the body. At this point, we already have all the
information we need to set up the soft body. It is important that the FlexExtAsset is
explicitly destroyed after being used by calling flexExtDestroyAsset() with the pointer
to the object as a parameter.

6.3 Uploading the data to the solver

Creating the data for the soft body was quite simple because of the helper function.
Getting the data to the solver requires a little bit more work.

As I said, FleX uses clusters/rigids to define the behavior of a soft (or rigid) body. This
data is sent to the solver on top of the particle data using flexSetRigids(). This function
requires several parameters:

FlexSolver* s The spacing between the particles

const int* offsets Pointer to an array of start offsets for a rigid in the indices
array, should be numRigids+1 in length since the first
entry must be 0

const int* indices Pointer to an array of indices for the rigid bodies.

Simon Coenen Nvidia Flex – Soft Bodies

11

const float* restPositions Pointer to an array of local space positions relative to the
rigid's center of mass (average position)

const float* restNormals Pointer to an array of local space normal.

const float* stiffness Pointer to an array of rigid stiffness coefficents, [0.0, 1.0]

const float* rotations Pointer to an array of quaternions.

const float* translations Pointer to an array of translations of the center of mass

int numRigids The amount of rigids/clustes

FlexMemory source The memory space of the buffer

Some of this data we already have, the only thing that still needs to be calculated are
the RestPositions. Those have to be in local space relative to the transform of the
cluster. The RestNormals are in the case of soft bodies not necessary so this can be
set to ‘nullptr’.

To get the RestPositions, we have to calculate the position of each particle relative to
the average position of the particles that are connected to that cluster, that is the
center of mass. Below, the code to acquire this data.

For each cluster, I iterate over its indices twice. The first time is to calculate the
average position of the particles connected to that cluster. When I have that, I can
subtract that average from each particle’s positio. This results in the local position of
the particle according to the center of mass. Having this data, I can complete the
flexSetRigids() method.

int count = 0;
for (int r = 0; r < numRigids; ++r)
{
 const int startIndex = RigidOffsets[r];
 const int endIndex = RigidOffsets[r + 1];
 const int clusterSize = endIndex - startIndex;
 Vector3 average = Vector3();
 for (int i = startIndex; i < endIndex; ++i)
 {
 const int rigidIndex = RigidIndices[i];
 average = average + Vector3((float*)&Positions[rigidIndex]);
 }
 average = average / float(clusterSize);
 for (int i = startIndex; i < endIndex; ++i)
 {
 const int rigidIdx = RigidIndices[i];
 localPositions[count++] = Vector3((float*)&Positions[rigidIdx]) - average;
 }
}

Simon Coenen Nvidia Flex – Soft Bodies

12

At this point, I already had the soft body working and using the particle renderer I
wrote for debugging, I could already see a clear result as seen on the image below.
You can see how the parameters of the soft body influences the particle density on
the image below. Lowering the radius increases the amount of particles and quality
of the body but significantly decreases the performance of the simulation. This is of
course no final result since now remains the rendering of the actual mesh.

6.4 Creating the skinning

Before I could start rendering the body, I first had to calculate the skinning of the mesh
on the particles. This is done by using another convenient method from the FleX
extension library: flexExtCreateSoftMeshSkinning(). As the method for creating the
soft body itself, it requires the position data of the mesh together with the FlexExtAsset
pointer and a few other parameters that control the result.

The method outputs two arrays:

• SkinningWeights
• SkinningIndices

Skinned animations are quite alike. The indices and weights point at the cluster that
is connected with a particle. Every position/vertex has exactly 4 weights and 4 indices.
Using this data together with the data of our clusters, I could now start with rendering
the body.

6.5 Rendering the body

To start with, I tried to execute the transformation of the skinning on the CPU every
frame. Although this worked like intended, it quickly became clear that doing all these
calculations on the GPU would be far more efficient. Before coding and simply
sending all the data through as a shader variable, I thought of a good way to get the
data to the GPU without wasting or duplicating any data from the MeshFilter.

Simon Coenen Nvidia Flex – Soft Bodies

13

What I mean with ‘saving data’ is that every body has its own cluster/skinning system
while the mesh data is exactly the same. It would be a waste to duplicate the
MeshFilter’s data for every body. The best way to go around this, is to have two
separate vertex buffers, one for the mesh data and one for the skinning data. This
way, I can use the same MeshFilter for multiple bodies while having separate data for
the skinning. The InputLayout finally looked like this:

Only having the weight and the cluster to calculate the transformations is not enough.
Doing those translations requires the position, rotation and restposes of each cluster.

Since in a shader, I can’t change the size of
an array during runtime, I set the maximum
amount of clusters to 200. If there is a body
that exceeds this amount, it will throw an error.
Now everything is sent to the GPU, I could finally get to the actual transformation of
each vertex so that it can be rendered.

As said, every vertex has 4 weights and the sum of these weights is always 1. To
transform a soft body, we need to transform the position and the normal of each vertex
according to the position and rotation of every cluster connected to that vertex. The
vertex shader can be read below. As for the pixel shader, it does not affect the mesh
itself so the shading can be done any way you like. For simplicity, I rendered the body
with simple blinn-phong shading.

//Per meshfilter
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 },
//Per softbody
{ "WEIGHT", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "CLUSTER", 0, DXGI_FORMAT_R32G32B32A32_SINT, 1, 16, D3D11_INPUT_PER_VERTEX_DATA, 0 },

float3 gRigidRestposes[200];
float3 gRigidTranslations[200];
float4 gRigidRotations[200];

float3 softNormal = float3(0,0,0);
float3 softPos = float3(0,0,0);
for(int w = 0; w < 4; ++w)
{
 int rigidIndex = input.cluster[w];
 float3 localPos = input.pos - gRigidRestposes[input.cluster[w]];

float3 skinnedPos = gRigidTranslations[rigidIndex] +
rotate(gRigidRotations[rigidIndex], localPos);
float3 skinnedNormal = rotate(gRigidRotations[rigidIndex],
normalize(input.normal));

 softPos += skinnedPos * input.weight[w];
 softNormal += skinnedNormal * input.weight[w];
}
output.wPos = softPos;
output.pos = mul(float4(output.wPos, 1), gViewProj);
output.normal = normalize(softNormal);

Simon Coenen Nvidia Flex – Soft Bodies

14

6.6 Final result

After the whole process of creating the body, uploading the data, creating the
skinning and rendering it, we can finally see a satisfying result.

Knowing how to create a soft body, makes it really simple to create rigid bodies. A
rigid body is basically a soft body but with only one cluster. This means we only need
to send one translation, rotation and restpose to the GPU to transform all the vertices.
Since the helper function ‘flexExtCreateSoftFromMesh’ creates multiple clusters, we
can’t use this function. This is where flexExtCreateRigidFromMesh() comes in. As the
other function, it outputs a FlexExtAsset pointer but only with one cluster. We don’t
need any skinning data since everything is bound to one rigid.

Because the bodies are created directly from a mesh filter, the possibilities are
endless. Any mesh can be loaded and converted to a soft body. Below are a few
meshes I converted to a soft body.

At the start of my research, I had the chance to try the Nvidia VR funhouse game
and noticed you had the ability to throw an octopus at a bullseye and it would stick
to the board when aimed right. I looked into this and couldn’t find any reference to
particles sticking to collision meshes. The solution was eventually quite simple and
easily overlooked. There is an adhesion parameter in the FlexParams that makes
particles more ‘sticky’. I started experimenting with this but came to the conclusion
that this would never work perfectly. I needed a specific object to be sticky so I
could throw something at it so you would think that adding a second solver for this
would work. Unfortunately, that doesn’t work since there is no collision between
particles of different solvers. This meant that if you need an object to be sticky,
everything that needs to interact with that object will have the exact same
parameters.

Simon Coenen Nvidia Flex – Soft Bodies

15

7.0 Triangle mesh collision
Besides just having soft bodies working, I needed something that the soft body can
interact and collide with apart from other soft bodies or rigid bodies. Soft bodies and
rigid bodies are great for dynamic purposes but take a lot of resources This is where
triangle collision meshes come in. These collision meshes can be created and
changed during runtime using the FleX framework. First, you have to create a triangle
mesh and with that triangle mesh you can create a collision geometry.

7.1 Creating the triangle mesh

Triangle meshes in FleX are created using the flexCreateTriangleMesh() method. This
method returns a pointer to a piece of data that will contain all the information of the
triangle mesh. This object does not contain any data yet so we have to provide it to
the object using the flexUpdateTriangleMesh() method. This method takes in a few
parameters.

[in] mesh A triangle mesh created with flexCreateTriangleMesh()

[in] vertices Pointer to an array of float3 vertex positions

[in] indices Pointer to an array of triangle indices, should be length
numTriangles*3

[in] numVertices The number of vertices in the vertices array

[in] numTriangles The number of triangles in the mesh

[in] lower A pointer to a float3 vector holding the lower spatial bounds of the
mesh

[in] upper A pointer to a float3 vector holding the upper spatial bounds of the
mesh

[in] source The memory space the transfers to the GPU will occur from

The function requires the lower and upper bounds of the mesh in local space. This
can be obtained by finding the two extreme points of the mesh. I used the
BoudingBox class from the DirectXCollision.h header that created a boundingbox by
providing the method the vertices of a mesh. With a bounding box, I could easily
find the extremes by adding the extents of the bounding box to the center for the
upper bounds and subtracting the extents from the center for the lower bounds.
With this data, you can create the triangle mesh. At this moment, I had a
FlexTriangleMesh object which is a data representation of a triangle mesh on the
physics solver.

flexUpdateTriangleMesh(
pMesh,

 (float*)pMeshFilter->GetVertexData("POSITION").pData,
 (int*)pMeshFilter->GetVertexData("INDEX").pData,
 pMeshFilter->VertexCount(),
 pMeshFilter->IndexCount() / 3,
 (float*)&min,
 (float*)&max,
 m_pFlexSystem->MemoryType
);

Simon Coenen Nvidia Flex – Soft Bodies

16

7.2 Creating and updating the collision mesh

With the triangle mesh object created earlier, I could now create a collision
geometry object that can be stored and be taken into account by the solver. For a
collision geometry to work, the solver requires quite an amount of data. In the end,
all of the shape data will be sent to the solver using the flexSetShapes() method and
it has 13 parameters. Below, the signature of the method.

To start with, the method requires a pointer to an array of FlexCollisionGeometry
objects. FlexCollisionGeometry is a class that can accommodate data for a triangle,
sphere, capsule, plane or SDF mesh. In the case of a triangle mesh, the data
structure has just two variables, the scale of the mesh and the triangle mesh itself
(which is the triangle mesh object created before).

Next up is an array of lower and upper bounds of the meshes. These can be
obtained by using the method used before (see BoundingBox). Another advantage
of using the bounding box us having the ability to transform it using the world matrix
of the body.

After this comes the translations and rotations. Note that the method requires you to
provide the transformation of the current frame and that one of the previous frame.
This means that every frame, the current transformation gets stored in the ‘previous’
one and gets updated with a new one (that one from the transform component in my
case). This allows you to move and rotate the mesh during runtime.

The last parameter except for the amount of shapes and the FlexMemory, is an array
of shape flags. Since the FlexCollisionGeometry has the flexibilty to be different
kinds of meshes, the flag tells the solver what kind of shape the user intends to use.
A flag can be created with the helper method flexMakeShapeFlags(). It takes in an
extra bool telling if the shape will be dynamic or not. In the case of a triangle mesh,
the method looks like this:

At this point, all the data is obtained and can be passed to the solver and used in
the simulation.

Creating other sorts of collision geometry like capsules, planes or spheres is more
trivial since it only requires you to provide the structure with data like radius, height,
length, … Besides this, there is no difference in method to create a collision mesh.

void flexSetShapes(
FlexSolver*, FlexCollisionGeometry*, int numGeometryEntries, float*
shapeAabbMins, float* shapeAabbMaxs, int* shapeOffsets, float*
shapePositions, float* shapeRotations, float* shapePrevPositions, float*
shapePrevRotations, int* shapeFlags, int numShapes, FlexMemory

);

int flag = flexMakeShapeFlags(eFlexShapeTriangleMesh, false)

Simon Coenen Nvidia Flex – Soft Bodies

17

8.0 Runtime parameter controlling
It is possible to load in any mesh from a file, voxelize it, skin it and eventually render
it with the given parameters. During runtime, I am able to upload changes to the
FlexParams to influence the behavior of the individual particles. To be able to control
these, I needed a simple user interface with sliders, checkboxes, buttons,…

There is a free framework called ImGui (https://github.com/ocornut/imgui). ImGui is a
graphical user interface library for C++ that supports everything I needed. The
framework has a static class that creates command lists that can be retrieved by the
user to send to the graphics context, in my case the DirectX device context, to render
each frame.

Integrating the framework requires some work because you have to create buffers,
create the shader and transfer the command lists of the framework to the graphics
context yourself. For this I created a class ImgUIDrawer that handles the initializing,
resource managing, drawing and updating of the UI while still using the static
methods of the framework to create the layout of the UI.

Once this is all done, using the framework is extremely simple. Below is the result of
a piece of code that creates UI elements to control the FlexParams.

https://github.com/ocornut/imgui

Simon Coenen Nvidia Flex – Soft Bodies

18

9.0 Fluids
Besides soft bodies, FleX has many more possibilities. Another big application is fluid
simulations. Because time allowed me to, I did some research in that topic as well. As
with every FleX feature, the basic building blocks always stay the same. Fluid particles
don’t need any voxelization or skinning but merely has different FlexParams that
makes the particles behave more fluid-like. Together with these specific parameters
for fluids, a special rendering technique makes the particles look like fluids.

9.1 Parameters

As said, the FlexParams play a big role in the behavior of the particles, especially for
fluid simulations. The FlexParams has a set of parameter I hadn’t used before for soft
bodies since they all relate to fluids.

With these parameters in mind, I looked at the demo application and started
experimenting with different combinations ranging from viscous behavior to water-like
behavior.

9.2 Rendering

In the case of fluids, creating the particles and simulating them is easy but the idea
behind rendering is more complex. There are multiple ways to render the particles
and one might say marching cubes is the way to go but this is very performance heavy
in a real-time environment and needs predefined bounds to work.

Another approach is the screen-space fluids algorithm (SSF) which is inspired by the
“Screen Space Meshes” paper by Simon Green (2010). This algorithm works entirely
in screen space and does not involve any meshes. The process consists out of these
steps:

1. Create billboarded quads on the position of each particle using a geometry
shader

2. Output the depth of a sphere to a separate rendertarget
3. Blur the depth image
4. Recreate the normals from the depth image
5. Render the surface using the calculated normals

I’ve put some time into making a practical implementation of this but stumbled across
quite some complications when trying to reconstruct the normals from the depth map.
I rendered a linear depth map from the quads that immitated spheres by translating

float mFluidRestDistance The distance fluid particles are spaced at the rest
density.
Range [0, radius]

bool mFluid Particles with phase 0 are considered fluid particles and
interact using the position based fluids method.

float mCohesion Control how strongly particles hold each other together,
default: 0.025, Range [0.0, +inf].

float mViscosity Smoothes particle velocities using XSPH (Smoothed
particles hydrodynamics) viscosity.

float mFreeSurfaceDrag Drag force applied to boundary fluid particles.

float mBuoyancy Gravity is scaled by this value for fluid particles.

Simon Coenen Nvidia Flex – Soft Bodies

19

the center of the quad by the normals of a sphere of that pixel. Below is an image that
explains this idea on a quad seen from top view.

In a second shader I tried to retrieve the normals of the depth map but failed to
achieve a good result. This was caused by imprecisions of the depth-to-normal
algorithm and the imprecision of the depth texture. The result contained too many
artifacts to achieve an acceptable result.

I decided to let the topic be and continue researching soft bodies and the rest of the
FleX framework. This is definitely something I will look into in the future.

Simon Coenen Nvidia Flex – Soft Bodies

20

10.0 Notes
10.1 Nvidia FleX and Nvidia PhysX

Nvidia FleX is a framework completely separated from any other framework from
Nvidia like PhysX. This introduces quite some complications since there is absolutely
no interaction between both of them. For example a rigidbody from PhysX will not
interact with a collision mesh from FleX meaning that if you would like to combine
these frameworks, you would need to do double the work. As stated by a user:

FleX is not designed to build gameplay affecting physics, as it lacks functionality such as
trigger events, contact callbacks, ray-casting, serialization, etc. For this reason it is
recommended to use FleX in conjunction with a traditional rigid-body physics engine, such
as PhysX SDK.

It makes sense that there are no interactions between the two frameworks but it
definitely decreases the usage of Nvidia FleX since it introduces all these
complications.

Miles Macklin, the lead developer of FleX stated that in the future, the new release of
Nvidia PhysX (version 3.4), Nvidia FleX will be integrated into PhysX and manual
mirroring will no longer be required since the systems will share the same collision
detection pipeline.

10.2 Other notes

The demo application from Nvidia is the best source for reference but still lacked
some detail that still has to be figured out. A great example of this is the FlexContainer
class that could potentially improve the performance of the application by lowering
the overhead of downloading and uploading the particle data of the GPU.

It would be interesting to look into this container structure as it might be a good way
to contain all the data of the particles in a well-designed structure.

Another example is the memory location of the particle data. As I mentioned in the
part where I explained the phases, when uploading or downloading data to the solver,
the last parameter is the memory source. This is an enumeration eFlexMemory that
can be either eFlexMemoryHost or eFlexMemoryDevice. This basically means that the
data can be stored either on the CPU or the GPU. I have done some research in to

Simon Coenen Nvidia Flex – Soft Bodies

21

this but at this point I can not use the GPU for data storage since this causes errors.
The problem is that neither the demo or the documentation contains information that
documents this enumeration and how to use it.

All these optimizations could make me able to take a step further in the amount of
particles I am able to create and the complexity of the scene. As a final test, I wanted
to test the limits of the framework on my device by checking how many softbodies I
could simulate at the same time. I was quite surprised to see that it could handle about
50 soft bodies which are about 14 000 particles all together.

10.3 Reflection

After a few months of researching the Nvidia FleX framework, I learnt quite a lot. Not
only how to work with the framework itself but also how to start a research without
having any knowledge in advance. It was though at first to start comprehending the
demo application provided in the SDK and learn from it and eventually apply it.

I have decided to create all the applications and demos during this research in my
own engine which caused some other complications as well. The upside of this was
that I had a great overview and sense of control over what I was working with.
Creating this engine myself helped me a lot since it gave me a better understanding
of graphics programming in general which in its turn helped me to understand the
rendering techniques of visualizing a soft body.

I understand why so few games make use of the framework. On its own, the
framework is too barebone and does not provide enough control to be properly
used in games. The performance of the simulations are quite promising though and I
am certain that in the future update of PhysX, Nvidia FleX will be used more often.

With this research I achieved what I intended to achieve, that is being able to
simulate, render and dynamically control a soft body. I will definitely continue
looking into the framework and try to understand the other applications of Nvidia
FleX.

Simon Coenen Nvidia Flex – Soft Bodies

22

11.0 Acknowledgements
I was guided on this project by Thomas Goussaert, lecturer at Digital Arts &
Entertainment, Kortrijk. I am thankful for his insight, ideas and feedback throughout
the researching process.

The engine used for this research is inspired by the Overlord Engine, written by
Thomas Goussaert.

12.0 References
Miles Macklin, Matthias Müller (2014), Unified Particle Systems

http://blog.mmacklin.com/flex/
Quan Chen (2015) , Making your game fully interactive by Nvidia FleX

http://developer.download.nvidia.com/assets/gameworks/downloads/regular/events/
cgdc15/Making%20Your%20Game%20Fully%20Interactive%20by%20NVIDIA%20Fl
eX-ENG.pdf

Simon Green (2010), Screen space fluid rendering in games
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf

The Nvidia FleX documentation and demo application
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/

The Unreal Engine source code on GitHub
https://github.com/NvPhysX/UnrealEngine

The official framework page
https://developer.nvidia.com/flex

The PhysX wiki
http://physxinfo.com/wiki/PhysX_FleX

Armen Barsegyan (2016), NVIDIA PhysX FleX and other fluid solvers for high-quality fluid
simulation

http://cgicoffee.com/blog/2016/11/nvidia-physx-flex-fluid-simulation-and-other-
solvers

All images created by myself

http://blog.mmacklin.com/flex/
http://developer.download.nvidia.com/assets/gameworks/downloads/regular/events/cgdc15/Making%20Your%20Game%20Fully%20Interactive%20by%20NVIDIA%20FleX-ENG.pdf
http://developer.download.nvidia.com/assets/gameworks/downloads/regular/events/cgdc15/Making%20Your%20Game%20Fully%20Interactive%20by%20NVIDIA%20FleX-ENG.pdf
http://developer.download.nvidia.com/assets/gameworks/downloads/regular/events/cgdc15/Making%20Your%20Game%20Fully%20Interactive%20by%20NVIDIA%20FleX-ENG.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/
https://github.com/NvPhysX/UnrealEngine
https://developer.nvidia.com/flex
http://physxinfo.com/wiki/PhysX_FleX
http://cgicoffee.com/blog/2016/11/nvidia-physx-flex-fluid-simulation-and-other-solvers
http://cgicoffee.com/blog/2016/11/nvidia-physx-flex-fluid-simulation-and-other-solvers

	1.0 Introduction
	2.0 Problems at first sight
	3.0 The building blocks of Nvidia FleX
	3.1 Initializing and updating FleX
	3.2 The particle system

	4.0 Rendering the particles individually
	5.0 Data storage
	6.0 Starting out with soft bodies
	6.1 The anatomy of a soft body
	6.2 Creating a soft body
	6.3 Uploading the data to the solver
	6.4 Creating the skinning
	6.5 Rendering the body
	6.6 Final result

	7.0 Triangle mesh collision
	7.1 Creating the triangle mesh
	7.2 Creating and updating the collision mesh

	8.0 Runtime parameter controlling
	9.0 Fluids
	9.1 Parameters
	9.2 Rendering

	10.0 Notes
	10.1 Nvidia FleX and Nvidia PhysX
	10.2 Other notes
	10.3 Reflection

	11.0 Acknowledgements
	12.0 References

