
Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

1

Steering behaviors
In C# and C++
Applied in Boxhead

Introduction
In this paper, I will go over the process of research I have done to get to the final
result of the artificial intelligence in my game Boxhead.

The game has A* pathfinding implemented but since this paper is all about steering
behaviors, I will not go over the concept or implementation of the A* pathfinding
algorithm, although this will be used in combination with the steering behaviors.

A* pathfinding is a great pathfinding algorithm but by itself, just having an agent
follow the path precisely feels extremely unnatural and limited. My goal is to improve
the AI by combining this with steering behaviors and get a more natural and
believable result.

Before implementing steering into the game, I decided to experiment in Unity3D first
so that the debugging and iterating would go faster. The goal is to research all the
separate behaviors first, going from the really simple ones to the more complicated
ones and eventually think about a way to combine and apply them in my game.

The basics
Since steering behaviors were pretty new to me, it was a good idea to go every
separate behavior individually in Unity. When I became familiar with the behaviors
and implemented them in Unity, it would be easier to then convert them to C++.

For the agent I use a CharacterController since my game in C++ uses them as well.
This may sound wrong but increasing the controller’s velocity towards the desired
velocity over time results in the same effect.

1. Seek and flee

The very simplest behavior is “Seek” and “Flee”. Seek moves the agent towards the
target position by calculating the steering acceleration to direct the agent towards
the target.

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

2

Flee is the opposite behavior of seeking. It calculates a steering force to move the
agent away from the target. This is achievable by simply multiplying the seek with -1.

2. Look where you are going

This is not exactly a steering behavior but this behavior rotates the agent towards
the direction it is moving in.

Because steering uses velocity in its calculations, the resulting velocity that gets set
to the agent will be gradually changed over time. This way not only the movement
will look really natural but also the way the agent looks towards its target.

3. Arrival

Seek behavior, at the moment, has a problem
when it reaches its destination. At the destination,
the agent will bounce off the target since it
actually did not arrive there yet because the
target itself is in the way or the agent just moves
over it by a little. This together with what is said
last topic, the velocity will gradually change over
time. But when it reaches its destination, the
agent will just move a little too far and then come
back again.

Arrival prevents the agent from moving through
the target. For this, the agent has a ‘slowing
radius’. When the agent is inside this radius, the
seeking force is decreased until the agent reaches its destination and the seeking
force is zero.

desiredVelocity = targetPosition - position;
float distance = desiredVelocity.magnitude;

if (distance < SlowingDistance)
 desiredVelocity = Normalize(desiredVelocity) * MaxVelocity * (distance / SlowingDistance);
else
 desiredVelocity = Normalize(desiredVelocity) * MaxVelocity;
Vector3 steering = desiredVelocity - currentVelocity;
return steering;

Vector3 desiredVelocity = position - position;
float distance = desiredVelocity.magnitude;
desiredVelocity = Normalize(desiredVelocity) * MaxVelocity;
Vector3 steering = desiredVelocity - currentVelocity;
return steering;

lookRotation = LookRotation(agentVelocity)

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

3

4. Pursue and evade

Pursue and seek are very alike except that pursue predicts where the target will be
in time T so it intercepts the target. For the implementation, the agent must know the
velocity of the target to predict where the target will be. To improve the result, the
pursue acceleration decreases depending on how close the target is.

Evade is like flee the opposite of pursue. It considers the velocity of the target and
flees from the position where the target will be in time T.

5. Wander

Wandering is often used in games when the agent does not have a direct task to do
and waits for something to happen. A simple implementation is just to have a set
interval in where it calculates a random position and seeks to that position.
Unfortunately, this results in an unrealistic behavior since every interval, the target
position suddenly changes.

A second implementation makes use
of a circle that is from a user-set
distance from the agent’s position. A
random direction on the circle is taken
and that vector is added to the circle
position vector. This result is
normalized and multiplied with the
avoidance force. Every frame, the
wander angle is incremented by a
small amount.

float distance = Distance(Target.position, position);
float ahead = distance / 10;
futurePosition = Target.position + Target.velocity * ahead;
return Seek(futurePosition);

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

4

6. Flow field pathfinding

The first time I’ve heard about flow field pathfinding is during a video of Supreme
Commander. The algorithm looked really interesting to research and compare with
the most commonly used algorithm A*.

The flow field algorithm uses a graph of nodes that holds the distance from the
target node. Before a flow field can be made, a heat map has to be calculated and
after that the flow field can be calculated using the node distances from the heat
map.

Heat map

The heat map gives every node that distance from the target node. This is done
using a breadth first search. This algorithm consists out of three main steps:

1. Start at the goal, set the distance
to 0.

2. Get the neighbors of each goal
and set their distance to the
distance of the previous node
plus one and add them to a
queue.

3. Dequeue the next node from the
queue and redo step 2 until the
queue is empty.

Flow field

When the distances for each node are populated, creating the vector field is
surprisingly simple. Of course, getting the neighbors has some exceptions.

The vector field simply stores a vector that points down the gradient of the heat
map.

void CreateHeatmap(FlowFieldNode node, Queue<FlowFieldNode> queue)
{
 var neighbours = GetNeighbours(node);

foreach (FlowFieldNode n in neighbours)
{

 n.Distance = node.Distance + 1;
 queue.Enqueue(n);

}
if (queue.Count == 0)

 return;
FlowFieldNode next = queue.Dequeue();

 CreateHeatmap(next, queue);
}

vector.x = left - right;
vector.z = down - up;
vector.normalize();
_grid[i].Vector = vector;

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

5

After doing some more research, I found another way to do this that eventually
worked better. The first approach has a major downside which is called “local
optima”, which I will discuss later. With the second approach, you iterate over the
whole grid and for each cell, you get the neighbor (can be diagonal), with the lowest
distance value. The vector of the current node is the direction to that neighboring
node. Even if two neighbors have the same distance value, the node will always
point towards one of the two. This approach is a little less efficient but does not have
the local optima problem. This is why I chose this approach for my game.

The result

Now that the flow field is generated, agents can use this flow field to make their way
to the target. Using a formula to get the closest node to their world position, the
agent can get the node’s vector and use it to calculate its steering force.

After a while of testing the method, I noticed a big issue with the flow field. When
there are two possible paths from a node that have an equal distance, the weight
between these nodes get balanced. This results in an orthogonal vector (x- or y-
component is zero). This does not seem like a problem because it is probably just a
straight line towards the target. But if there is an obstacle in between the node and
the target, the vector of those nodes will have the same direction as the normal of
the obstacle. This leads to a huge problem because agents on this particular node
will just bump in to the wall. After doing some research on this issue, I found out this
was a common problem called “local optima”. One of the solutions I’ve seen the
most is to subdivide each node into four nodes and mark the four goal nodes with
distance zero. I did not like this idea since it would quadruple the memory usage.
The solution I used uses the same principle but does not subdivide the nodes.
Having four targets makes sure that neighbors of a node will never outbalance each
other so the problem of “local optima” is solved.

int minDistance = numeric_limits<int>::max();
int minDistanceIdx = 0;
for (size_t j = 1; j < neighbors.size(); j++)
{
 if (neighbors[j]->IsWalkable() == false)
 continue;
 if(neighbors[j]->GetDistance() < minDistance)
 {
 minDistance = neighbors[j]->GetDistance();
 minDistanceIdx = j;
 }
}
vec.x = neighbors[minDistanceIdx]->GetPosition().x - m_Grid[i]->GetPosition().x;
vec.z = neighbors[minDistanceIdx]->GetPosition().z - m_Grid[i]->GetPosition().z;
vec.normalize();

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

6

In the image, you see the problem solved using four target nodes.

The main properties of using flow field pathfinding is that having multiple agents with
the same target is extremely efficient but having a few agents with multiple targets
requires the algorithm to calculate a heat map and a flow field for every target which
is quite inefficient.

Flow field pathfinding vs. A* pathfinding

Comparing A* star pathfinding with flow field pathfinding shows that flow field
pathfinding path finding is extremely efficient when there is only one target and
multiple agents since it only needs to recalculate the vector field each frame instead
of finding a path for each agent with A* pathfinding.

Each has their advantages and disadvantages. The reason to use A* above flow
fields is precision. If there would be areas that are not walkable but are not physical
obstacles, the agent would be able to run through it (see image for clarification).
This is a big issue with flow field pathfinding that A* does not have at all.

On the other side, if you have hundreds of agents and one target, flow field
pathfinding is the most efficient choice. Flow field pathfinding works with velocity
and thus works extremely well together with other steering behaviors.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0 5 10 15 20 25 30

Ti
m

e
in

 m
s

#Agenta

Time(#agents)

A* Flow Field

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

7

In my situation, combining an A* grid and a flow field together is very convenient
since a flow field node just requires adding a distance and a vector variable. Other
than this, the node structure of both algorithms are very much alike. After this, the
calculation of a flow field can be optional.

7. Obstacle avoidance

Obstacle avoidance is a useful way for agents to
locally prevent it from colliding in to obstacles or
other agents. This is no solution to pathfinding by
its own but it helps making the movement more
realistic in a local area.

I have read many ways to handle obstacle
avoidance and the most common one is doing a
raycast towards the direction where the agent is
going with the length of the agent’s ‘vision’. When
an object is hit, the steering vector is calculated
by subtracting the endpoint of the ray by the
center point of the obstacle like shown in the
image.

This seemed to be working quite alright but I thought, having Nvidia physX at my
disposal on both platforms, it would maybe be better to use the normal of the
surface that has been hit and reflect the forward direction of the agent with that
normal. This idea unfortunately did not work out that well.

I can conclude that obstacle avoidance is definitely no replacement for actual
pathfinding. It is a great way for local avoidance but when it comes to finding a way
to a target is too much without using a pathfinding algorithm.

8. Flocking

Flocking is one of the most interesting steering behavior besides flow field following.
It is a balance between three different forces: cohesion, separation and alignment. I
will not go in to flocking in this paper but I will eventually use it in my application. The
basic idea is that, when agents move in a group, cohesion will keep them together,
separation will make them keep their distance from each other and alignment makes
sure that they are all
moving in the same
direction. The result is a
behavior like a flock of
birds (That is where the
name comes from).
Another term for agent
that flock is boids (bird-
oids).

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

8

Combining steering behaviors

The most important advantage of steering behaviors is that they can be easily
combined by just adding all the elements together. After adding them all, you
truncate the result so it does not exceed the agent’s max velocity and you got your
steering force. Another very advantageous thing is that every steering force can
have its own weight in the resulting force. By just multiplying a certain behavior with
a weight, that specific behavior can influence the resulting force more or less to
achieve many different results. Because of this, changing the weights dynamically,
depending on different events, is a really interesting thing to play with.

The integration goes as follows (pseudo-code):

Implementation in Boxhead (C++)

I won’t go too far in depth on how I implemented this in C++ since the algorithms
obviously stay the same no matter what programming language that is used. Only
some datatypes differ. Here a few examples:

• Vector3  XMFLOAT3 / XMVECTOR / PxVec3
• Queue<T>  std::queue<T> (Enqueue / Dequeue  push() / front() & pop())
• List<T>  std::vector<T>

I have two main classes to maintain the pathfinding: Grid and Pathfinding. The grid
is created at the start of the program and holds all the node data. The pathfinding
class uses the singleton pattern so it can be used everywhere. This class mostly
handles all my A* pathfinding but also serves as an accessor for the grid. This way
enemies can both access the Pathfinding class for A* pathfinding as well as access
the grid to get the node data for flow field pathfinding.

I will divide the implementation in two parts, the player and the enemies.

The player

The player uses a RTS-like point and click system. Left click to shoot in the mouse
direction and right click to move to the mouse position. For this I used A* in
combination with some steering behaviors.

force = SteeringForceSum;
acceleration = force / mass; //Optional
velocity = acceleration * deltatime;
speed = velocity.length;
agent.move(velocity);
if(speed > lookAtThreshold)
 lookDirection = velocity;

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

9

The first thought was just to, when the player clicks on a location, calculate a path
using A* and just make the player follow the path. The result was alright but felt
really unnatural especially when the player saw the target. The first improvement
was to use path follow to move along the path in a more natural way.

The code is simplified because normally it would require you to handle some exceptional situations.

As you can see, like every steering behavior, it returns a vector. This way it’s really
convenient to move the player over time, giving it a natural ease-in and –out feel.

A second thing I realized is that when the player sees the target, meaning that there
are no more obstacles in the way, it is not necessary anymore for the player to follow
the path. Instead the player can just do a simple seek together with an arrival
behavior towards the target resulting in a more desirable movement pattern.

The enemies

The enemies are zombies and most of the time move in groups. So I thought it was
the perfect opportunity to make use of the flow field and some other steering
behaviors. I noticed that it was quite the challenge to make use of as many steering
behaviors as possible since steering is better used in RTS games or crowd
simulations. Nevertheless, experimenting with it eventually gave some good results.

The basic idea is using flow pathfinding to have the zombies make their way to the
player. When the zombies are in line of sight of the player, the would do a pursue
towards the player while combining separation and cohesion in a small range to
have the surround you when they reach you instead of them standing in one line.
Since I use a behavior tree, it is really convenient since it is easier to focus on each
behavior separately and them bringing them together.

Conclusion

The reason why steering behaviors are so good is that they are not based on
complex strategies involving path planning or global calculation but still create a
very believable result when combined. The implementation is easy to understand
and combining the behaviors can produce complex movement patterns. Combining
the behaviors is extremely intuitive since they all rely on a desired velocity. This
means you can just add all the desired behaviors together, each having a certain
‘weight’ in the resulting calculation.

The main idea behind the whole artificial intelligence is first selecting the action by
strategy, planning, decisions, … and calculating steering forces accordingly. After

PxVec3 currPos = GetTransform()->GetWorldPositionPcVec3();
PxVec3 targetPos = ToPxVec3(m_Path[m_CurrentPathIndex]->GetPosition());
if(DistanceXZ(currPos, targetPos) <= m_NodeRadius)
 ++m_CurrentPathIndex;
PxVec3 direction = targetPos - currPos;
direction.normalize();
return direction;

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

10

the path is determined by the steering, the locomotion (animations) can be applied
and modified according to the applied forces/velocity.

Steering behaviors are meant to be used when having multiple agents that move in
groups like in real time strategy games like Supreme Commander and Planetary
Annihilation.

Using steering behaviors in my game was a challenge because at first sight, A*
pathfinding combined with some own behaviors in a behavior tree seemed like the
best solution. The pathfinding is more precise and robust but on the bad side, the
performance is lower. For demo purposes I did not combine A* with any steering
behaviors but created enemies that use A* and enemies that use several steering
behaviors.

Simon Coenen Steering Behaviors 2DAE1 – Gameplay Programming

11

References and sources:
Introduction to steering behaviors:

http://www.gamasutra.com/blogs/JuanBelonPerez/20140724/221421/Introduction_to_Steering_Behav
iours.php

Paper of Craig Reynolds on “Steering behaviors for autonomous characters”

http://www.cs.uu.nl/docs/vakken/mcrs/papers/8.pdf

Steering Behaviors overview

http://gamedevelopment.tutsplus.com/series/understanding-steering-behaviors--gamedev-12732

Flocking basics:

http://gamedevelopment.tutsplus.com/tutorials/the-three-simple-rules-of-flocking-behaviors-
alignment-cohesion-and-separation--gamedev-3444

Overview of different steering behaviors

https://github.com/libgdx/gdx-ai/wiki/Steering-Behaviors#independent-facing

Pentheny Graham – The Next Vector presentation at GDC 2013

http://gdcvault.com/play/1018230/The-Next-Vector-Improvements-in

Battle circle AI

http://gamedevelopment.tutsplus.com/tutorials/battle-circle-ai-let-your-player-feel-like-theyre-fighting-
lots-of-enemies--gamedev-13535

Intro to flow field pathfinding

http://gamedevelopment.tutsplus.com/tutorials/understanding-goal-based-vector-field-pathfinding--
gamedev-9007

The breadth first search algorithm

http://www.tutorialspoint.com/data_structures_algorithms/breadth_first_traversal.htm

Flow field generation

https://howtorts.github.io/2014/01/04/basic-flow-fields.html

All images are created by myself.

Paper written for Digital Arts & Entertainment, Howest University.

Gameplay Programming, 2016

http://www.gamasutra.com/blogs/JuanBelonPerez/20140724/221421/Introduction_to_Steering_Behaviours.php
http://www.gamasutra.com/blogs/JuanBelonPerez/20140724/221421/Introduction_to_Steering_Behaviours.php
http://www.cs.uu.nl/docs/vakken/mcrs/papers/8.pdf
http://gamedevelopment.tutsplus.com/series/understanding-steering-behaviors--gamedev-12732
http://gamedevelopment.tutsplus.com/tutorials/the-three-simple-rules-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
http://gamedevelopment.tutsplus.com/tutorials/the-three-simple-rules-of-flocking-behaviors-alignment-cohesion-and-separation--gamedev-3444
https://github.com/libgdx/gdx-ai/wiki/Steering-Behaviors#independent-facing
http://gdcvault.com/play/1018230/The-Next-Vector-Improvements-in
http://gamedevelopment.tutsplus.com/tutorials/battle-circle-ai-let-your-player-feel-like-theyre-fighting-lots-of-enemies--gamedev-13535
http://gamedevelopment.tutsplus.com/tutorials/battle-circle-ai-let-your-player-feel-like-theyre-fighting-lots-of-enemies--gamedev-13535
http://gamedevelopment.tutsplus.com/tutorials/understanding-goal-based-vector-field-pathfinding--gamedev-9007
http://gamedevelopment.tutsplus.com/tutorials/understanding-goal-based-vector-field-pathfinding--gamedev-9007
http://www.tutorialspoint.com/data_structures_algorithms/breadth_first_traversal.htm

